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EQTransformer
is
an
AI-
based
earth-
quake
sig-
nal

detector and phase (P&S) picker based on a deep neural network with an attention mechanism. It has a hierarchical
architecture specifically designed for earthquake signals. EQTransformer has been trained on global seismic data
and can perform detection and arrival time picking simultaneously. In addition to the prediction probabilities, it can
also provides model uncertainties.

The EQTransformer python 3 package includes modules for downloading continuous seismic data, preprocessing,
performing earthquake signal detection, and phase (P & S) picking using pre-trained models, building and testing new
models, and performing a simple phase association.

The following is the main reference of EQTransformer:

• Mousavi, S.M., Ellsworth, W.L., Zhu, W., Chuang, L.Y., Beroza, G.C., “Earthquake Transformer: An Attentive
Deep-learning Model for Simultaneous Earthquake Detection and Phase Picking “. Nature Communications,
(2020).
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CHAPTER 1

Github development page:

https://github.com/smousavi05/EQTransformer
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CHAPTER 2
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2.1 Overview

EQTransformer is a multi-task deep neural network for simultaneous earthquake detection and phase picking with
a hierarchical attentive model. It mainly consists of one very deep encoder and three separate decoders (detector, P-
picker, and S-picker branches) with an attention mechanism. Attention mechanisms in Neural Networks are inspired
by human visual attention. Humans focus on a certain region of an image with high resolution while perceiving the
surrounding image at low resolution and then adjusting the focal point over time. Our model emulates this through two
levels of attention mechanism in a hierarchical structure. one at the global level for identifying an earthquake signal in
the input time series, and one at the local level for identifying different seismic phases within that earthquake signal.
Two levels of self-attention (global and local) help the neural network capture and exploit dependencies between
local (individual phases) and global (full-waveform) features within an earthquake signal. This model has several
distinctive characteristics: 1) it is the first hierarchical-attentive model specifically designed for earthquake signal;
2) with 56 activation layers, it is the deepest network that has been trained for seismic signal processing; 3) it has a
multi-task architecture that simultaneously performs the detection and phase picking - using separate loss functions
- while modeling the dependency of these tasks on each other through a hierarchical structure; 4) in addition to the
prediction probabilities, it provides output variations based on Bayesian inference; 5) it is the first model trained using
a globally distributed training set of 1.3 M local earthquake observations; 6) it consists of both convolutional and
recurrent neurons. Read our paper for more details.

Architecture of EQTransformer
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2.1.1 Dataset

STanford EArthquake Dataset (STEAD) is used to train the EQTransformer. STEAD is a large-scale global dataset of
labeled earthquake and non-earthquake signals. Here we used 1 M earthquake and 300 K noise waveforms (including
both ambient and cultural noise) recorded by ~ 2600 seismic stations at epicentral distances up to 300 km. Earthquake
waveforms are associated with about 450 K earthquakes with a diverse geographical distribution around the world.
The majority of these earthquakes are smaller than M 2.5 and have been recorded within 100 km from the epicenter.
A full description of properties of the dataset can be found in STEAD. Waveforms are 1 minute long with a sampling
rate of 100 Hz and are causally band-passed filtered from 1.0-45.0 Hz.

STEAD contains earthquake signals from most of the seismically active countries with a few exceptions like Japan.

2.1.2 Application to Japan

However, EQTransformer has a high generalization ability. Applying it to 5 weeks of continuous data recorded
during the 2000 Mw 6.6 western Tottori, Japan earthquake, two times more events were detected compared with the
catalog of Japan Meteorological Agency (JMA).

In total, JMA’s analysts picked 279,104 P and S arrival times on 57 stations, while EQTransformer was able to pick
401,566 P and S arrival-time on 18 of those stations (due to unavailability of data for other stations). To compare the
manual picks by JMA with our automatic picks we used about 42,000 picks on the common stations and calculated
the arrival time differences. The distributions of these arrival time differences between the manual and deep-learning
picks for P and S waves are shown in the following figure. The standard deviation of differences between picks is
around 0.08 second with a mean absolute error of around 0.06 second or 6 samples. The mean error is only 1 sample
(0.01 s).

2.1.3 Application to Other Regions

Test set data from STEAD:

Ridgecrest, California:

Tottori, Japan:
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West Texas, USA:

Variations in the output probability predictions (model uncertainty) can be useful to identify false-positive events (like
the one shown in the above figure).

2.1.4 Comparison with Other Methods

Below are the picking errors for P and S waves. All methods have been applied to the same benchmark test set from
STEAD.

1) Comparing with some deep-learning pickers:

PhaseNet, GPD, Yews, PpkNet, pickNet

1) Comparing with some traditional pickers:

Kurtosis, FilterPicker, AIC

2.2 Installation

EQTransformer is a Python 3.x package that uses libraries from Tensorflow and Obspy.

2.2.1 Installation via conda (recommended)

The following will download and install EQTransformer that supports a variety of platforms, including Windows,
macOS, and Linux operating systems. Note that you will need to have Python 3.x (3.6 or 3.7) installed.

It is recommended that you use a Python virtual environment (e.g., conda) to test the EQTransformer package. Please
follow the to install conda if you do not have either a miniconda or anaconda installed on your machine. Once you
have conda installed, you can use Terminal or an Anaconda Prompt to create a Python virtual environment. Check
managing for more information.

conda create -n eqt python=3.7

Conda activate eqt

conda install -c smousavi05 eqtransformer

2.2. Installation 7
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This will download and install EQTransformer and all required packages (including Tensorflow and Obspy) into your
machine. Note: Keep executing the last line if it did not succeed in the first try.

2.2.2 Installation via PyPI

If you already have Obspy installed on your machine, you can get EQTransformer through PyPI:

pip install EQTransformer

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2.3 Installation from Source

The sources for EQTransformer can be downloaded from the Github repo.

You can either clone the public repository:

git clone git://github.com/smousavi05/EQTransformer

Once you have a copy of the source, you can cd to EQTransformer directory and install it with:

python setup.py install

2.3 Tutorial

EQTransformer package is divided into two main sub-modules, the core and utils sub-modules.

The core sub-module contains the main, high-level functions:

trainer It can be used to generate and train new EQTransformer models with different encoder depths.

tester It is used to test a trained model using ground truth data.

predictor It is used to apply a pre-trained model to pre-processed continuous data.

mseed_predictor It is used to perform a fast detection & picking directly on continuous data in MiniSeed
format.

The utils sub-module contains the main, high-level functions:

downloader It can be used to download continuous data from seismic networks.

hdf5_maker It is used to pre-process the continuous data and slice it to 1-minute windows used by
predictor module.

plot It contains a few different methods to visualize the detection and downloading results.

associator Performs a simple phase association and output phase information for the associated events
in HypoInverse input format.

2.3.1 Downloading Continuous Data

The following will download the information on the stations that are available based on your search criteria:

2.3. Tutorial 13
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import os
json_basepath = os.path.join(os.getcwd(),"json/station_list.json")

from EQTransformer.utils.downloader import makeStationList

makeStationList(json_path=json_basepath, client_list=["SCEDC"], min_lat=35.50, max_
→˓lat=35.60, min_lon=-117.80, max_lon=-117.40, start_time="2019-09-01 00:00:00.00",
→˓end_time="2019-09-03 00:00:00.00", channel_list=["HH[ZNE]", "HH[Z21]", "BH[ZNE]"],
→˓filter_network=["SY"], filter_station=[])

The above function will generate station_list.json file containing the station information. Next, you can
use this file and download 1 day of data for the available stations at Ridgecrest, California from Southern California
Earthquake Data Center or IRIS using the following:

from EQTransformer.utils.downloader import downloadMseeds

downloadMseeds(client_list=["SCEDC", "IRIS"], stations_json=json_basepath, output_dir=
→˓"downloads_mseeds", min_lat=35.50, max_lat=35.60, min_lon=-117.80, max_lon=-117.40,
→˓start_time="2019-09-01 00:00:00.00", end_time="2019-09-03 00:00:00.00", chunk_
→˓size=1, channel_list=[], n_processor=2)

This will download the continous data (in MiniSeed) and save them into individual folders for each station insider
your defined output directory (i.e. downloads_mseeds).

Check the downloading.ipynb or API Documentations for more details.

2.3.2 Detection and Picking

To perform detection & picking you need a pre-trained model of EQTransformer which you can get from Model-
sAndSampleData.

EQTransformer provides two different option for performing the detection & picking on the continuous data:

• Option (I) using pre-processed data (hdf5 files):

This option is recommended for smaller periods (a few days to a month). This allows you to test the performance and
explore the effects of different parameters while the provided hdf5 file makes it easy to access the waveforms.

For this option, you first need to convert your MiniSeed files for each station into 1-min long Numpy arrays in a single
hdf5 file and generated a CSV file containing the list of traces in the hdf5 file. You can do this using the following
command:

from EQTransformer.utils.hdf5_maker import preprocessor

preprocessor(preproc_dir="preproc", mseed_dir='downloads_mseeds', stations_json=json_
→˓basepath, overlap=0.3, n_processor=2)

This will generate one station_name.hdf5 and one station_name.csv file for each of your station’s data
and put them into a directory named mseed_dir+_hdfs. Then you need to pass the name of this directory (which
contains all of your hdf5 & CSV files) and a model to the following command:

from EQTransformer.core.predictor import predictor

predictor(input_dir= 'downloads_mseeds_processed_hdfs', input_model='EqT_model.h5',
→˓output_dir='detections', detection_threshold=0.3, P_threshold=0.1, S_threshold=0.1,
→˓number_of_plots=100, plot_mode='time')
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You can use relatively low threshold values for the detection and picking since EQTransformer is robust to false
positives. Note that enabling uncertainty estimation, outputting probabilities, or plotting all the detected events will
slow down the process.

Outputs for each station will be written in your output directory (i.e. detections).

X_report.txt contains the processing info on input parameters used for the detection &picking and final results
such as running time, the total number of detected events (these are unique events and duplicated ones have been
already removed).

X_prediction_results.csv contains detection & picking results.

In the figures folder, you can find the plots for some detected events:

These plots are helpful to check if you are getting too many false positives (non-earthquake signals) and get a better
sense that if your selected threshold values for the detection and picking is too high or too low.

If you are using local MiniSeed files you can generate a station_list.json by supplying an absolute path to a directory
containing Miniseed files and a station location dictionary using the stationListFromMseed function like the following:

• Option (II) directly from mseed files:

You can perform the detection & phase picking directly on downloaded MiniSeed files. This saves both preprocessing
time and the extra space needed for the hdf5 file and is recommended for larger (longer) datasets. However, it can be
more memory intensive. So it is better to have your MiniSeed fils being shorter than one month or so.

This option also does not allow you to estimate the uncertainties, save the prediction probabilities, or use the advantages
of having hdf5 files which makes it easy to access the raw event waveforms based on detection results.

from EQTransformer.core.mseed_predictor import mseed_predictor

mseed_predictor(input_dir='downloads_mseeds', input_model='EqT_model.h5', stations_
→˓json=json_basepath, output_dir='detections', detection_threshold=0.3, P_threshold=0.
→˓1, S_threshold=0.1, number_of_plots=100, plot_mode='time_frequency', overlap=0.3,
→˓batch_size=500)

(continues on next page)
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(continued from previous page)

As you can see from the above example, you can choose between two different modes for your plots. The selected
time_frequency mode will output following plots that can be useful to identify non-earthquake signals from earthquake
ones based on their frequency contents:

Check the detection.ipynb or API Documentations for more details.

2.3.3 Visualizing the Results

• Continouty of the Seismic Data Being Processed:

Both prepocessor and mseed_predictor output a time_tracks.pkl file that contains the time info of
original data and their number of components. You can use this file to visualize the continuity and type of your data
using the following module:

from EQTransformer.utils.plot import plot_data_chart

plot_data_chart('time_tracks.pkl', time_interval=10)
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• Helicorder Plots:

To check if you are missing too many events (high false negative) in the continuous data or catch most of them, it is
always a good idea to check out the raw data (the most important lesson in observational seismology). You can do it
using these commands:

First, you can check one particular day of (raw) data:

from EQTransformer.utils.plot import plot_detections, plot_helicorder

plot_helicorder(input_mseed='downloads_mseeds/CA06/GS.CA06.00.HHZ__20190902T000000Z__
→˓20190903T000000Z.mseed', input_csv=None)

Now the following command will mark those events that you have detected on your helicorder plot:

2.3. Tutorial 17



EQTransformer Documentation, Release 2020

plot_helicorder(input_mseed='downloads_mseeds/CA06/GS.CA06.00.HHZ__20190902T000000Z__
→˓20190903T000000Z.mseed', input_csv='detections/CA06_outputs/X_prediction_results.csv
→˓')

This together with the events plots can give you a sense that if you are using too high or too low threshold levels.

• (III) Map Plot:

You can also visualize the number of detections over stations using this:

plot_detections(input_dir="detections", input_json="station_list.json", plot_type=
→˓'station_map', marker_size=50)

This is sometimes helpful to identify problematic stations (e.g. those that are closer to anthropogenic sources) and
exclude them from you’re further analyses.

• (IV) Histograms:

And the following command will generate histograms of the detected events for each station in your detections folder:
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plot_detections(input_dir="detections", input_json="station_list.json", plot_type=
→˓'hist', time_window=120)

Check the visualization.ipynb or API Documentations for more details.

2.3.4 Phase Association

After detection, the following performs a simple and fast association and writes down the results in HypoInverse
format (Y2000.phs) and ObsPy QuakeML format (associations.xml) which can directly be used to locate
the detected earthquakes using conventional location algorithms like HypoInverse or NonLinLoc. This also outputs
traceName_dic.json, a dictionary where the trace names for source waveforms of all the detections associated
with an event are listed. This can be used later to access the original waveform traces for calculating the cross-
correlations during the relocation process or magnitude estimation.

import shutil
import os
from EQTransformer.utils.associator import run_associator

out_dir = "asociation"
try:

shutil.rmtree(out_dir)
except Exception:

pass
os.makedirs(out_dir)

run_associator(input_dir='detections', start_time="2019-09-01 00:00:00.00", end_time=
→˓"2019-09-03 00:00:00.00", moving_window=15, pair_n=3)

Note that unlike the predictor, mseed_predictor, and downloader modules the associator does not
automatically generate the output directory and you need to create it first. Otherwise, it will write the output files in
the current directory.

Check the association.ipynb or API Documentations for more details.

2.3.5 Building and Testing a New Model

You can also generate your own EQTransformer network (e.g. with different encoder depths, augmentation, label
type, etc) and train it on your data. The only prerequisite is that your data need to be in our data format (STEAD).

from EQTransformer.core.trainer import trainer

trainer(input_hdf5='waveforms.hdf5', input_csv='metadata.csv', output_name='test_
→˓trainer', cnn_blocks=2, lstm_blocks=1, padding='same', activation='relu', drop_
→˓rate=0.2, label_type='gaussian', add_event_r=0.6, add_gap_r=0.2, shift_event_r=0.9,
→˓add_noise_r=0.5, mode='generator', train_valid_test_split=[0.60, 0.20, 0.20], batch_
→˓size=20, epochs=10, patience=2, gpuid=None, gpu_limit=None)

(continues on next page)
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(continued from previous page)

After you built your model you can also test it using your ground truth data:

from EQTransformer.core.tester import tester

tester(input_hdf5='waveforms.hdf5', input_testset='test.npy', input_model='test_
→˓trainer_001.h5', output_name='test_tester', detection_threshold=0.20, P_threshold=0.
→˓1, S_threshold=0.1, number_of_plots=3, estimate_uncertainty=True, number_of_
→˓sampling=2, input_dimention=(6000, 3), normalization_mode='std', mode='generator',
→˓batch_size=10, gpuid=None, gpu_limit=None)

Check the training.ipynb or API Documentations for more details.

2.3.6 Warnings and Recommendations

• Notice the main requirement is that your MiniSeed files names follow the IRIS format (e.g. GS.CA06.00.
HHZ__20190902T000000Z__20190903T000000Z.mseed). If your mseed files have different name
format you just need to change their names.

• The appropriate choice of values for parameters like detection and picking thresholds, batch_size, and the over-
lap values can affect the number of detected events. A recommended workflow is to first apply the predictor
modules on a small portion of your data (1 or 2 days) with different parameter values and after hyperparameter
tuning apply the model to your whole dataset.

• downloader, preprocessor, predictor, and mseed_predictor will erase the previous folders and
generate an empty directory for writing the outputs. They will give you a warning ask your permission if a folder
with the given name of ouput_dir already exists. So be careful if you don’t want to erase your previous results.

• The provided associator module is a very simple algorithm mainly based on the detection times. It is appropriate
for a small number of stations located relatively close to each other and to the source. For larger or regional
networks or cases with a high seismicity rate, you may need to use a more sophisticated and accurate associator.

• The examples subfolder in the GitHub repository contains small and quick examples for each module. As a
quick start, you can run them one by one after you installed the package.

• The provided models (e.g. EqT_model.h5, and EqT_model2.h5) have been trained using different set-
tings and have different attributes. While EqT_model.h5 has been trained to minimize false positives,
EqT_model2.h5 has been trained to minimize false-negative rate.

• EqT models use the dropout sampling technique. At each inference, a different set of neurons are randomly
used. Thus the output prediction values and as a result, the number of detected events might differ from one
prediction run to another. This is what we use to estimate the model uncertainties.

• And finaly these are a few interesting cases:

In the following figures, EqT detected some small earthquakes with weaker signals while it was insensitive to non-
earthquake signals with strong impulsive energies.

Here, EqT detected many smaller earthquakes while ignoring a large teleseismic event. This is an inherent characteris-
tic of EQTransformer to be only sensitive to local events (mainly within 150 km) and filter out regional and teleseismic
ones.

• Good Luck
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2.4 Copyright and License

2.4.1 Copyright

Copyright 2020, S. Mostafa Mousavi

2.4.2 The MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

2.4.3 Contact

Question? Bug repots? Please contact Mostafa Mousavi vi mmousavi@stanford.edu

2.5 Contributing

We welcome all contributions including bug fixes, feature enhancements, and documentation improvments.

2.5.1 Coding Standards

• 4 space indentation (no tabs) and PEP8 conformance

• No use of __author__

• Documentation must be in Sphinx-compliant format.

• Submitted code should follow standard practices for documentation and testing.

• Automated testing (using pytest) must pass prior to merging.
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2.7 Indices and tables

• genindex

• modindex

• search
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