

[image: logo.png]

Welcome to EQTransformer’s documentation!

EQTransformer is an AI-based earthquake signal detector and phase (P&S) picker based on a deep neural network with an attention mechanism. It has a hierarchical architecture specifically designed for earthquake signals. EQTransformer has been trained on global seismic data and can perform detection and arrival time picking simultaneously. In addition to the prediction probabilities, it can also provides model uncertainties.

The EQTransformer python 3 package includes modules for downloading continuous seismic data, preprocessing, performing earthquake signal detection, and phase (P & S) picking using pre-trained models, building and testing new models, and performing a simple phase association.

The following is the main reference of EQTransformer:

	Mousavi, S.M., Ellsworth, W.L., Zhu, W., Chuang, L.Y., Beroza, G.C., “Earthquake Transformer: An Attentive Deep-learning Model for Simultaneous Earthquake Detection and Phase Picking “. Nature Communications, (2020).

Github development page:

https://github.com/smousavi05/EQTransformer

Contents

	1. Overview
	1.1. Dataset

	1.2. Application to Japan

	1.3. Application to Other Regions

	1.4. Comparison with Other Methods

	2. Installation
	2.1. Installation via conda (recommended)

	2.2. Installation via PyPI

	2.3. Installation from Source

	3. Tutorial
	3.1. Downloading Continuous Data

	3.2. Detection and Picking

	3.3. Visualizing the Results

	3.4. Phase Association

	3.5. Building and Testing a New Model

	3.6. Warnings and Recommendations

	4. Copyright and License
	4.1. Copyright

	4.2. The MIT License

	4.3. Contact

	5. Contributing
	5.1. Coding Standards

	6. References

Indices and tables

	Index

	Module Index

	Search Page

1. Overview

EQTransformer is a multi-task deep neural network for simultaneous earthquake detection and phase picking with a hierarchical attentive model. It mainly consists of one very deep encoder and three separate decoders (detector, P-picker, and S-picker branches) with an attention mechanism. Attention mechanisms in Neural Networks are inspired by human visual attention. Humans focus on a certain region of an image with high resolution while perceiving the surrounding image at low resolution and then adjusting the focal point over time. Our model emulates this through two levels of attention mechanism in a hierarchical structure. one at the global level for identifying an earthquake signal in the input time series, and one at the local level for identifying different seismic phases within that earthquake signal. Two levels of self-attention (global and local) help the neural network capture and exploit dependencies between local (individual phases) and global (full-waveform) features within an earthquake signal. This model has several distinctive characteristics: 1) it is the first hierarchical-attentive model specifically designed for earthquake signal; 2) with 56 activation layers, it is the deepest network that has been trained for seismic signal processing; 3) it has a multi-task architecture that simultaneously performs the detection and phase picking - using separate loss functions - while modeling the dependency of these tasks on each other through a hierarchical structure; 4) in addition to the prediction probabilities, it provides output variations based on Bayesian inference; 5) it is the first model trained using a globally distributed training set of 1.3 M local earthquake observations; 6) it consists of both convolutional and recurrent neurons. Read our paper for more details.

[image: _images/9arch.png]

Architecture of EQTransformer

1.1. Dataset

STanford EArthquake Dataset (STEAD) [https://ieeexplore.ieee.org/abstract/document/8871127/] is used to train the EQTransformer. STEAD [https://github.com/smousavi05/STEAD] is a large-scale global dataset of labeled earthquake and non-earthquake signals. Here we used 1 M earthquake and 300 K noise waveforms (including both ambient and cultural noise) recorded by ~ 2600 seismic stations at epicentral distances up to 300 km. Earthquake waveforms are associated with about 450 K earthquakes with a diverse geographical distribution around the world. The majority of these earthquakes are smaller than M 2.5 and have been recorded within 100 km from the epicenter. A full description of properties of the dataset can be found in STEAD [https://github.com/smousavi05/STEAD]. Waveforms are 1 minute long with a sampling rate of 100 Hz and are causally band-passed filtered from 1.0-45.0 Hz.

[image: _images/8eqmap.png]

STEAD [https://github.com/smousavi05/STEAD] contains earthquake signals from most of the seismically active countries with a few exceptions like Japan.

1.2. Application to Japan

However, EQTransformer has a high generalization ability. Applying it to 5 weeks of continuous data recorded during the 2000 Mw 6.6 [https://pubs.geoscienceworld.org/ssa/bssa/article/93/4/1468/120827] western Tottori [https://www.google.com/maps/place/Tottori,+Japan/@35.4220364,133.9132257,10z/data=!3m1!4b1!4m5!3m4!1s0x355596c9a0846f89:0x3847638629e55456!8m2!3d35.5011082!4d134.2351011], Japan earthquake, two times more events were detected compared with the catalog of Japan Meteorological Agency (JMA).

[image: _images/10toto.jpg]

In total, JMA’s analysts picked 279,104 P and S arrival times on 57 stations, while EQTransformer was able to pick 401,566 P and S arrival-time on 18 of those stations (due to unavailability of data for other stations). To compare the manual picks by JMA with our automatic picks we used about 42,000 picks on the common stations and calculated the arrival time differences. The distributions of these arrival time differences between the manual and deep-learning picks for P and S waves are shown in the following figure. The standard deviation of differences between picks is around 0.08 second with a mean absolute error of around 0.06 second or 6 samples. The mean error is only 1 sample (0.01 s).

[image: _images/11histtoto.png]

1.3. Application to Other Regions

Test set data from STEAD [https://github.com/smousavi05/STEAD]:

[image: _images/SF3.jpg]

Ridgecrest [https://www.google.com/maps/place/Ridgecrest,+CA+93555/@35.6225618,-117.7312539,12z/data=!3m1!4b1!4m5!3m4!1s0x80c16cbc000c8aa5:0xdcb273036710aeba!8m2!3d35.6224561!4d-117.6708966], California:

[image: _images/SF5.png]

Tottori [https://www.google.com/maps/place/Tottori,+Japan/@35.4220364,133.9132257,10z/data=!3m1!4b1!4m5!3m4!1s0x355596c9a0846f89:0x3847638629e55456!8m2!3d35.5011082!4d134.2351011], Japan:

[image: _images/SF6.png]

West Texas [https://www.google.com/maps/place/West,+TX+76691/@31.8052808,-97.1087705,14z/data=!3m1!4b1!4m5!3m4!1s0x864f7566cf0ca5c7:0xfb25f7a61ca24545!8m2!3d31.8023057!4d-97.0909551], USA:

[image: _images/SF13.png]

Variations in the output probability predictions (model uncertainty) can be useful to identify false-positive events (like the one shown in the above figure).

1.4. Comparison with Other Methods

Below are the picking errors for P and S waves. All methods have been applied to the same benchmark test set from STEAD [https://github.com/smousavi05/STEAD].

	Comparing with some deep-learning pickers:

[image: _images/SF9_.jpg]

PhaseNet [https://academic.oup.com/gji/article/216/1/261/5129142], GPD [https://pubs.geoscienceworld.org/ssa/bssa/article/108/5A/2894/546740/Generalized-Seismic-Phase-Detection-with-Deep], Yews [https://www.sciencedirect.com/science/article/pii/S0031920118301407], PpkNet [https://pubs.geoscienceworld.org/ssa/srl/article/90/3/1079/569837/Hybrid-Event-Detection-and-Phase-Picking-Algorithm], pickNet [https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JB017536]

	Comparing with some traditional pickers:

[image: _images/SF10_.jpg]

Kurtosis [https://ieeexplore.ieee.org/abstract/document/1020271], FilterPicker [https://pubs.geoscienceworld.org/ssa/srl/article/83/3/531/143936], AIC [https://ci.nii.ac.jp/naid/10024498111/]

2. Installation

EQTransformer is a Python 3.x package that uses libraries from Tensorflow [https://www.tensorflow.org/] and Obspy [https://github.com/obspy/obspy/wiki/].

2.1. Installation via conda (recommended)

The following will download and install EQTransformer that supports a variety of platforms, including Windows, macOS, and Linux operating systems. Note that you will need to have Python 3.x (3.6 or 3.7) installed.

It is recommended that you use a Python virtual environment (e.g., conda) to test the EQTransformer package. Please follow the conda user guide to install conda if you do not have either a miniconda or anaconda installed on your machine. Once you have conda installed, you can use Terminal or an Anaconda Prompt to create a Python virtual environment. Check managing anaconda environment for more information.

conda create -n eqt python=3.7

Conda activate eqt

conda install -c smousavi05 eqtransformer

This will download and install EQTransformer and all required packages (including Tensorflow and Obspy) into your machine.
Note: Keep executing the last line if it did not succeed in the first try.

2.2. Installation via PyPI

If you already have Obspy [https://github.com/obspy/obspy/wiki/] installed on your machine, you can get EQTransformer through PyPI:

pip install EQTransformer

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

2.3. Installation from Source

The sources for EQTransformer can be downloaded from the Github repo [https://github.com/smousavi05/EQTransformer].

You can either clone the public repository:

git clone git://github.com/smousavi05/EQTransformer

Once you have a copy of the source, you can cd to EQTransformer directory and install it with:

python setup.py install

3. Tutorial

EQTransformer package is divided into two main sub-modules, the core and utils sub-modules.

The core sub-module contains the main, high-level functions:

	trainer

	It can be used to generate and train new EQTransformer models with different encoder depths.

	tester

	It is used to test a trained model using ground truth data.

	predictor

	It is used to apply a pre-trained model to pre-processed continuous data.

	mseed_predictor

	It is used to perform a fast detection & picking directly on continuous data in MiniSeed format.

The utils sub-module contains the main, high-level functions:

	downloader

	It can be used to download continuous data from seismic networks.

	hdf5_maker

	It is used to pre-process the continuous data and slice it to 1-minute windows used by predictor module.

	plot

	It contains a few different methods to visualize the detection and downloading results.

	associator

	Performs a simple phase association and output phase information for the associated events in HypoInverse input format.

3.1. Downloading Continuous Data

The following will download the information on the stations that are available based on your search criteria:

import os
json_basepath = os.path.join(os.getcwd(),"json/station_list.json")

from EQTransformer.utils.downloader import makeStationList

makeStationList(json_path=json_basepath, client_list=["SCEDC"], min_lat=35.50, max_lat=35.60, min_lon=-117.80, max_lon=-117.40, start_time="2019-09-01 00:00:00.00", end_time="2019-09-03 00:00:00.00", channel_list=["HH[ZNE]", "HH[Z21]", "BH[ZNE]"], filter_network=["SY"], filter_station=[])

The above function will generate station_list.json file containing the station information. Next, you can use this file and download 1 day of data for the available stations at Ridgecrest, California from Southern California Earthquake Data Center or IRIS using the following:

from EQTransformer.utils.downloader import downloadMseeds

downloadMseeds(client_list=["SCEDC", "IRIS"], stations_json=json_basepath, output_dir="downloads_mseeds", min_lat=35.50, max_lat=35.60, min_lon=-117.80, max_lon=-117.40, start_time="2019-09-01 00:00:00.00", end_time="2019-09-03 00:00:00.00", chunk_size=1, channel_list=[], n_processor=2)

This will download the continous data (in MiniSeed) and save them into individual folders for each station insider your defined output directory (i.e. downloads_mseeds).

Check the downloading.ipynb [https://github.com/smousavi05/EQTransformer/blob/master/examples/downloading.ipynb] or API Documentations for more details.

3.2. Detection and Picking

To perform detection & picking you need a pre-trained model of EQTransformer which you can get from ModelsAndSampleData [https://github.com/smousavi05/EQTransformer/tree/master/ModelsAndSampleData].

EQTransformer provides two different option for performing the detection & picking on the continuous data:

	Option (I) using pre-processed data (hdf5 files):

This option is recommended for smaller periods (a few days to a month). This allows you to test the performance and explore the effects of different parameters while the provided hdf5 file makes it easy to access the waveforms.

For this option, you first need to convert your MiniSeed files for each station into 1-min long Numpy arrays in a single hdf5 file and generated a CSV file containing the list of traces in the hdf5 file. You can do this using the following command:

from EQTransformer.utils.hdf5_maker import preprocessor

preprocessor(preproc_dir="preproc", mseed_dir='downloads_mseeds', stations_json=json_basepath, overlap=0.3, n_processor=2)

This will generate one station_name.hdf5 and one station_name.csv file for each of your station’s data and put them into a directory named mseed_dir+_hdfs. Then you need to pass the name of this directory (which contains all of your hdf5 & CSV files) and a model to the following command:

from EQTransformer.core.predictor import predictor

predictor(input_dir= 'downloads_mseeds_processed_hdfs', input_model='EqT_model.h5', output_dir='detections', detection_threshold=0.3, P_threshold=0.1, S_threshold=0.1, number_of_plots=100, plot_mode='time')

You can use relatively low threshold values for the detection and picking since EQTransformer is robust to false positives. Note that enabling uncertainty estimation, outputting probabilities, or plotting all the detected events will slow down the process.

Outputs for each station will be written in your output directory (i.e. detections).

X_report.txt contains the processing info on input parameters used for the detection &picking and final results such as running time, the total number of detected events (these are unique events and duplicated ones have been already removed).

X_prediction_results.csv contains detection & picking results.

In the figures folder, you can find the plots for some detected events:

[image: _images/1time.png]

These plots are helpful to check if you are getting too many false positives (non-earthquake signals) and get a better sense that if your selected threshold values for the detection and picking is too high or too low.

If you are using local MiniSeed files you can generate a station_list.json by supplying an absolute path to a directory containing Miniseed files and a station location dictionary using the stationListFromMseed function like the following:

	Option (II) directly from mseed files:

You can perform the detection & phase picking directly on downloaded MiniSeed files. This saves both preprocessing time and the extra space needed for the hdf5 file and is recommended for larger (longer) datasets. However, it can be more memory intensive. So it is better to have your MiniSeed fils being shorter than one month or so.

This option also does not allow you to estimate the uncertainties, save the prediction probabilities, or use the advantages of having hdf5 files which makes it easy to access the raw event waveforms based on detection results.

from EQTransformer.core.mseed_predictor import mseed_predictor

mseed_predictor(input_dir='downloads_mseeds', input_model='EqT_model.h5', stations_json=json_basepath, output_dir='detections', detection_threshold=0.3, P_threshold=0.1, S_threshold=0.1, number_of_plots=100, plot_mode='time_frequency', overlap=0.3, batch_size=500)

As you can see from the above example, you can choose between two different modes for your plots. The selected time_frequency mode will output following plots that can be useful to identify non-earthquake signals from earthquake ones based on their frequency contents:

[image: _images/2time-frequency.png]

Check the detection.ipynb [https://github.com/smousavi05/EQTransformer/blob/master/examples/detection.ipynb] or API Documentations for more details.

3.3. Visualizing the Results

	Continouty of the Seismic Data Being Processed:

Both prepocessor and mseed_predictor output a time_tracks.pkl file that contains the time info of original data and their number of components. You can use this file to visualize the continuity and type of your data using the following module:

from EQTransformer.utils.plot import plot_data_chart

plot_data_chart('time_tracks.pkl', time_interval=10)

[image: _images/3Xdata_chart.png]

	Helicorder Plots:

To check if you are missing too many events (high false negative) in the continuous data or catch most of them, it is always a good idea to check out the raw data (the most important lesson in observational seismology). You can do it using these commands:

First, you can check one particular day of (raw) data:

from EQTransformer.utils.plot import plot_detections, plot_helicorder

plot_helicorder(input_mseed='downloads_mseeds/CA06/GS.CA06.00.HHZ__20190902T000000Z__20190903T000000Z.mseed', input_csv=None)

[image: _images/4heli.png]

Now the following command will mark those events that you have detected on your helicorder plot:

plot_helicorder(input_mseed='downloads_mseeds/CA06/GS.CA06.00.HHZ__20190902T000000Z__20190903T000000Z.mseed', input_csv='detections/CA06_outputs/X_prediction_results.csv')

[image: _images/5heli.png]

This together with the events plots can give you a sense that if you are using too high or too low threshold levels.

	
	Map Plot:

You can also visualize the number of detections over stations using this:

plot_detections(input_dir="detections", input_json="station_list.json", plot_type='station_map', marker_size=50)

[image: _images/6station_map.png]

This is sometimes helpful to identify problematic stations (e.g. those that are closer to anthropogenic sources) and exclude them from you’re further analyses.

	
	Histograms:

And the following command will generate histograms of the detected events for each station in your detections folder:

plot_detections(input_dir="detections", input_json="station_list.json", plot_type='hist', time_window=120)

[image: _images/7SV08_outputs.png]

Check the visualization.ipynb [https://github.com/smousavi05/EQTransformer/blob/master/examples/visualization.ipynb] or API Documentations for more details.

3.4. Phase Association

After detection, the following performs a simple and fast association and writes down the results in HypoInverse format (Y2000.phs) and ObsPy QuakeML format (associations.xml) which can directly be used to locate the detected earthquakes using conventional location algorithms like HypoInverse or NonLinLoc. This also outputs traceName_dic.json, a dictionary where the trace names for source waveforms of all the detections associated with an event are listed. This can be used later to access the original waveform traces for calculating the cross-correlations during the relocation process or magnitude estimation.

import shutil
import os
from EQTransformer.utils.associator import run_associator

out_dir = "asociation"
try:
 shutil.rmtree(out_dir)
except Exception:
 pass
os.makedirs(out_dir)

run_associator(input_dir='detections', start_time="2019-09-01 00:00:00.00", end_time="2019-09-03 00:00:00.00", moving_window=15, pair_n=3)

Note that unlike the predictor, mseed_predictor, and downloader modules the associator does not automatically generate the output directory and you need to create it first. Otherwise, it will write the output files in the current directory.

Check the association.ipynb [https://github.com/smousavi05/EQTransformer/blob/master/examples/association.ipynb] or API Documentations for more details.

3.5. Building and Testing a New Model

You can also generate your own EQTransformer network (e.g. with different encoder depths, augmentation, label type, etc) and train it on your data. The only prerequisite is that your data need to be in our data format (STEAD [https://github.com/smousavi05/STEAD]).

from EQTransformer.core.trainer import trainer

trainer(input_hdf5='waveforms.hdf5', input_csv='metadata.csv', output_name='test_trainer', cnn_blocks=2, lstm_blocks=1, padding='same', activation='relu', drop_rate=0.2, label_type='gaussian', add_event_r=0.6, add_gap_r=0.2, shift_event_r=0.9, add_noise_r=0.5, mode='generator', train_valid_test_split=[0.60, 0.20, 0.20], batch_size=20, epochs=10, patience=2, gpuid=None, gpu_limit=None)

After you built your model you can also test it using your ground truth data:

from EQTransformer.core.tester import tester

tester(input_hdf5='waveforms.hdf5', input_testset='test.npy', input_model='test_trainer_001.h5', output_name='test_tester', detection_threshold=0.20, P_threshold=0.1, S_threshold=0.1, number_of_plots=3, estimate_uncertainty=True, number_of_sampling=2, input_dimention=(6000, 3), normalization_mode='std', mode='generator', batch_size=10, gpuid=None, gpu_limit=None)

Check the training.ipynb [https://github.com/smousavi05/EQTransformer/blob/master/examples/training.ipynb] or API Documentations for more details.

3.6. Warnings and Recommendations

	Notice the main requirement is that your MiniSeed files names follow the IRIS [https://www.iris.edu/hq/] format (e.g. GS.CA06.00.HHZ__20190902T000000Z__20190903T000000Z.mseed). If your mseed files have different name format you just need to change their names.

	The appropriate choice of values for parameters like detection and picking thresholds, batch_size, and the overlap values can affect the number of detected events. A recommended workflow is to first apply the predictor modules on a small portion of your data (1 or 2 days) with different parameter values and after hyperparameter tuning apply the model to your whole dataset.

	downloader, preprocessor, predictor, and mseed_predictor will erase the previous folders and generate an empty directory for writing the outputs. They will give you a warning ask your permission if a folder with the given name of ouput_dir already exists. So be careful if you don’t want to erase your previous results.

	The provided associator module is a very simple algorithm mainly based on the detection times. It is appropriate for a small number of stations located relatively close to each other and to the source. For larger or regional networks or cases with a high seismicity rate, you may need to use a more sophisticated and accurate associator.

	The examples subfolder in the GitHub repository contains small and quick examples for each module. As a quick start, you can run them one by one after you installed the package.

	The provided models (e.g. EqT_model.h5, and EqT_model2.h5) have been trained using different settings and have different attributes. While EqT_model.h5 has been trained to minimize false positives, EqT_model2.h5 has been trained to minimize false-negative rate.

	EqT models use the dropout sampling technique. At each inference, a different set of neurons are randomly used. Thus the output prediction values and as a result, the number of detected events might differ from one prediction run to another. This is what we use to estimate the model uncertainties.

	And finaly these are a few interesting cases:

In the following figures, EqT detected some small earthquakes with weaker signals while it was insensitive to non-earthquake signals with strong impulsive energies.

[image: _images/Picture1.png]

[image: _images/Picture11.png]

Here, EqT detected many smaller earthquakes while ignoring a large teleseismic event. This is an inherent characteristic of EQTransformer to be only sensitive to local events (mainly within 150 km) and filter out regional and teleseismic ones.

[image: _images/Picture12.png]

	Good Luck

4. Copyright and License

4.1. Copyright

Copyright 2020, S. Mostafa Mousavi

4.2. The MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

4.3. Contact

Question? Bug repots? Please contact Mostafa Mousavi vi mmousavi@stanford.edu

5. Contributing

We welcome all contributions including bug fixes, feature enhancements, and documentation improvments.

5.1. Coding Standards

	4 space indentation (no tabs) and PEP8 conformance

	No use of __author__

	Documentation must be in Sphinx-compliant format.

	Submitted code should follow standard practices for documentation and testing.

	Automated testing (using pytest) must pass prior to merging.

6. References

Wang, J., Xiao, Z., Liu, C., Zhao, D. & Yao, Z. Deep-Learning for Picking Seismic Arrival
Times. Journal of Geophysical Research: Solid Earth (2019).

Zhu, L. et al. Deep learning for seismic phase detection and picking in the aftershock zone of 2008 Mw7. 9 Wenchuan Earthquake. Physics of the Earth and Planetary Interiors (2019).

Zhou, Y., Yue, H., Kong, Q. & Zhou, S. Hybrid Event Detection and Phase-Picking Algorithm
Using Convolutional and Recurrent Neural Networks. Seismological Research Letters 90,
1079–1087 (2019).

Mousavi, S. M., Zhu, W., Sheng, Y. & Beroza, G. C. CRED: A deep residual network of
convolutional and recurrent units for earthquake signal detection. Scientific reports 9, 10267 (2019).

Zhu,W. & Beroza, G. C. PhaseNet: a deep-neural-network-based seismic arrival-time picking
method. Geophysical Journal International 216, 261–273 (2018).

Ross, Z. E., Meier, M.-A., Hauksson, E. & Heaton, T. H. Generalized seismic phase detection with deep learning. Bulletin of the Seismological Society of America 108, 2894–2901 (2018).

Mousavi, S. M., Sheng, Y., Zhu,W. & Beroza, G. C. STanford EArthquake Dataset (STEAD):
A Global Data Set of Seismic Signals for AI. IEEE Access (2019).

Lomax, A., Satriano, C. & Vassallo, M. Automatic picker developments and optimization:
FilterPicker—A robust, broadband picker for real-time seismic monitoring and earthquake
early warning. Seismological Research Letters 83, 531–540 (2012).

Maeda, N. A method for reading and checking phase times in autoprocessing system of seismic wave data. Zisin 38, 365–379 (1985).

Saragiotis, C. D., Hadjileontiadis, L. J. & Panas, S. M. PAI-S/K: A robust automatic seismic P phase arrival identification scheme. IEEE Transactions on Geoscience and Remote Sensing 40, 1395–1404 (2002).

Fukuyama, E., Ellsworth, W. L., Waldhauser, F. & Kubo, A. Detailed fault structure of the
2000 western Tottori, Japan, earthquake sequence. Bulletin of the Seismological Society of
America 93, 1468–1478 (2003).

Earthquake Transformer: An Attentive Deep-learning
Model for Simultaneous Earthquake Detection and Phase
Picking

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 EQTransformer	

 	
 	
 EQTransformer.core.mseed_predictor	

 	
 	
 EQTransformer.core.predictor	

 	
 	
 EQTransformer.core.tester	

 	
 	
 EQTransformer.core.trainer	

 	
 	
 EQTransformer.utils.associator	

 	
 	
 EQTransformer.utils.downloader	

 	
 	
 EQTransformer.utils.hdf5_maker	

 	
 	
 EQTransformer.utils.plot	

Index

 D
 | E
 | M
 | O
 | P
 | R
 | S
 | T

D

 	
 	downloadMseeds() (in module EQTransformer.utils.downloader)

 	
 	downloadSacs() (in module EQTransformer.utils.downloader)

E

 	
 	EQTransformer.core.mseed_predictor (module)

 	EQTransformer.core.predictor (module)

 	EQTransformer.core.tester (module)

 	EQTransformer.core.trainer (module)

 	
 	EQTransformer.utils.associator (module)

 	EQTransformer.utils.downloader (module)

 	EQTransformer.utils.hdf5_maker (module)

 	EQTransformer.utils.plot (module)

M

 	
 	makeStationList() (in module EQTransformer.utils.downloader)

 	
 	mseed_predictor() (in module EQTransformer.core.mseed_predictor)

O

 	
 	on_epoch_end() (EQTransformer.core.mseed_predictor.PreLoadGeneratorTest method)

P

 	
 	plot_data_chart() (in module EQTransformer.utils.plot)

 	plot_detections() (in module EQTransformer.utils.plot)

 	plot_helicorder() (in module EQTransformer.utils.plot)

 	
 	predictor() (in module EQTransformer.core.predictor)

 	PreLoadGeneratorTest (class in EQTransformer.core.mseed_predictor)

 	preprocessor() (in module EQTransformer.utils.hdf5_maker)

R

 	
 	run_associator() (in module EQTransformer.utils.associator)

S

 	
 	stationListFromMseed() (in module EQTransformer.utils.hdf5_maker)

T

 	
 	tester() (in module EQTransformer.core.tester)

 	
 	trainer() (in module EQTransformer.core.trainer)

EQTransformer.core.mseed_predictor module

Created on Sun Jun 21 21:55:54 2020

@author: mostafamousavi

last update: 05/27/2021

	
class EQTransformer.core.mseed_predictor.PreLoadGeneratorTest(list_IDs, inp_data, batch_size=32, norm_mode='std')

	Bases: tensorflow.python.keras.utils.data_utils.Sequence

Keras generator with preprocessing. For testing. Pre-load version.

	Parameters

	
	list_IDsx (str) – List of trace names.

	file_name (str) – Path to the input hdf5 file.

	dim (tuple) – Dimension of input traces.

	batch_size (int, default=32.) – Batch size.

	n_channels (int, default=3.) – Number of channels.

	norm_mode (str, default=max) – The mode of normalization, ‘max’ or ‘std’

	Returns

	Batches of two dictionaries

	Return type

	{‘input’: X}: pre-processed waveform as input {‘detector’: y1, ‘picker_P’: y2, ‘picker_S’: y3}: outputs including three separate numpy arrays as labels for detection, P, and S respectively.

	
on_epoch_end()

	Updates indexes after each epoch

	
EQTransformer.core.mseed_predictor.mseed_predictor(input_dir='downloads_mseeds', input_model='sampleData&Model/EqT1D8pre_048.h5', stations_json='station_list.json', output_dir='detections', detection_threshold=0.3, P_threshold=0.1, S_threshold=0.1, number_of_plots=10, plot_mode='time', loss_weights=[0.03, 0.4, 0.58], loss_types=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'], normalization_mode='std', batch_size=500, overlap=0.3, gpuid=None, gpu_limit=None, overwrite=False, output_probabilities=False)

	To perform fast detection directly on mseed data.

	Parameters

	
	input_dir (str) – Directory name containing hdf5 and csv files-preprocessed data.

	input_model (str) – Path to a trained model.

	stations_json (str) – Path to a JSON file containing station information.

	output_dir (str) – Output directory that will be generated.

	detection_threshold (float, default=0.3) – A value in which the detection probabilities above it will be considered as an event.

	P_threshold (float, default=0.1) – A value which the P probabilities above it will be considered as P arrival.

	S_threshold (float, default=0.1) – A value which the S probabilities above it will be considered as S arrival.

	number_of_plots (float, default=10) – The number of plots for detected events outputed for each station data.

	plot_mode (str, default=time) – The type of plots: time only time series or time_frequency time and spectrograms.

	loss_weights (list, default=[0.03, 0.40, 0.58]) – Loss weights for detection P picking and S picking respectively.

	loss_types (list, default=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy']) – Loss types for detection P picking and S picking respectively.

	normalization_mode (str, default=std) – Mode of normalization for data preprocessing max maximum amplitude among three components std standard deviation.

	batch_size (int, default=500) – Batch size. This wont affect the speed much but can affect the performance. A value beteen 200 to 1000 is recommanded.

	overlap (float, default=0.3) – If set the detection and picking are performed in overlapping windows.

	gpuid (int) – Id of GPU used for the prediction. If using CPU set to None.

	gpu_limit (int) – Set the maximum percentage of memory usage for the GPU.

	overwrite (Boolean, default=False) – Overwrite your results automatically.

	output_probabilities (Boolean, default=False) – Write probability in output_dir/prob.h5 for future plotting
Structure: prediction_probabilities.hdf5{begintime: {Earthquake: probability, P_arrival: probability, S_arrival: probability}}
Notice: It you turn this parameter on, it will generate larges file (A test shows ~150 Mb file generated for a three-components station for 3 months)

	Returns

	
	output_dir/STATION_OUTPUT/X_prediction_results.csv (A table containing all the detection, and picking results. Duplicated events are already removed.)

	output_dir/STATION_OUTPUT/X_report.txt (A summary of the parameters used for prediction and performance.)

	output_dir/STATION_OUTPUT/figures (A folder containing plots detected events and picked arrival times.)

	time_tracks.pkl (A file containing the time track of the continous data and its type.)

Note

This does not allow uncertainty estimation or writing the probabilities out.

EQTransformer.core.predictor module

Created on Wed Apr 25 17:44:14 2018

@author: mostafamousavi
last update: 05/27/2021

	
EQTransformer.core.predictor.predictor(input_dir=None, input_model=None, output_dir=None, output_probabilities=False, detection_threshold=0.3, P_threshold=0.1, S_threshold=0.1, number_of_plots=10, plot_mode='time', estimate_uncertainty=False, number_of_sampling=5, loss_weights=[0.03, 0.4, 0.58], loss_types=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'], input_dimention=(6000, 3), normalization_mode='std', batch_size=500, gpuid=None, gpu_limit=None, number_of_cpus=5, use_multiprocessing=True, keepPS=True, allowonlyS=True, spLimit=60)

	Applies a trained model to a windowed waveform to perform both detection and picking at the same time.

	Parameters

	
	input_dir (str, default=None) – Directory name containing hdf5 and csv files-preprocessed data.

	input_model (str, default=None) – Path to a trained model.

	output_dir (str, default=None) – Output directory that will be generated.

	output_probabilities (bool, default=False) – If True, it will output probabilities and estimated uncertainties for each trace into an HDF file.

	detection_threshold (float, default=0.3) – A value in which the detection probabilities above it will be considered as an event.

	P_threshold (float, default=0.1) – A value which the P probabilities above it will be considered as P arrival.

	S_threshold (float, default=0.1) – A value which the S probabilities above it will be considered as S arrival.

	number_of_plots (float, default=10) – The number of plots for detected events outputed for each station data.

	plot_mode (str, default='time') – The type of plots: ‘time’: only time series or ‘time_frequency’, time and spectrograms.

	estimate_uncertainty (bool, default=False) – If True uncertainties in the output probabilities will be estimated.

	number_of_sampling (int, default=5) – Number of sampling for the uncertainty estimation.

	loss_weights (list, default=[0.03, 0.40, 0.58]) – Loss weights for detection, P picking, and S picking respectively.

	loss_types (list, default=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy']) – Loss types for detection, P picking, and S picking respectively.

	input_dimention (tuple, default=(6000, 3)) – Loss types for detection, P picking, and S picking respectively.

	normalization_mode (str, default='std') – Mode of normalization for data preprocessing, ‘max’, maximum amplitude among three components, ‘std’, standard deviation.

	batch_size (int, default=500) – Batch size. This wont affect the speed much but can affect the performance. A value beteen 200 to 1000 is recommanded.

	gpuid (int, default=None) – Id of GPU used for the prediction. If using CPU set to None.

	gpu_limit (int, default=None) – Set the maximum percentage of memory usage for the GPU.

	number_of_cpus (int, default=5) – Number of CPUs used for the parallel preprocessing and feeding of data for prediction.

	use_multiprocessing (bool, default=True) – If True, multiple CPUs will be used for the preprocessing of data even when GPU is used for the prediction.

	keepPS (bool, default=False) – If True, detected events require both P and S picks to be written. If False, individual P or S (see allowonlyS) picks may be written.

	allowonlyS (bool, default=True) – If True, detected events with “only S” picks will be allowed. If False, an associated P pick is required.

	spLimit (int, default=60) – S - P time in seconds. It will limit the results to those detections with events that have a specific S-P time limit.

	Returns

	
	./output_dir/STATION_OUTPUT/X_prediction_results.csv (A table containing all the detection, and picking results. Duplicated events are already removed.)

	./output_dir/STATION_OUTPUT/X_report.txt (A summary of the parameters used for prediction and performance.)

	./output_dir/STATION_OUTPUT/figures (A folder containing plots detected events and picked arrival times.)

	./time_tracks.pkl (A file containing the time track of the continous data and its type.)

Notes

Estimating the uncertainties requires multiple predictions and will increase the computational time.

EQTransformer.core.tester module

Created on Wed Apr 25 17:44:14 2018

@author: mostafamousavi
last update: 05/27/2021

	
EQTransformer.core.tester.tester(input_hdf5=None, input_testset=None, input_model=None, output_name=None, detection_threshold=0.2, P_threshold=0.1, S_threshold=0.1, number_of_plots=100, estimate_uncertainty=True, number_of_sampling=5, loss_weights=[0.05, 0.4, 0.55], loss_types=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'], input_dimention=(6000, 3), normalization_mode='std', mode='generator', batch_size=500, gpuid=None, gpu_limit=None)

	Applies a trained model to a windowed waveform to perform both detection and picking at the same time.

	Parameters

	
	input_hdf5 (str, default=None) – Path to an hdf5 file containing only one class of “data” with NumPy arrays containing 3 component waveforms each 1 min long.

	input_testset (npy, default=None) – Path to a NumPy file (automaticaly generated by the trainer) containing a list of trace names.

	input_model (str, default=None) – Path to a trained model.

	output_dir (str, default=None) – Output directory that will be generated.

	output_probabilities (bool, default=False) – If True, it will output probabilities and estimated uncertainties for each trace into an HDF file.

	detection_threshold (float, default=0.3) – A value in which the detection probabilities above it will be considered as an event.

	P_threshold (float, default=0.1) – A value which the P probabilities above it will be considered as P arrival.

	S_threshold (float, default=0.1) – A value which the S probabilities above it will be considered as S arrival.

	number_of_plots (float, default=10) – The number of plots for detected events outputed for each station data.

	estimate_uncertainty (bool, default=False) – If True uncertainties in the output probabilities will be estimated.

	number_of_sampling (int, default=5) – Number of sampling for the uncertainty estimation.

	loss_weights (list, default=[0.03, 0.40, 0.58]) – Loss weights for detection, P picking, and S picking respectively.

	loss_types (list, default=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy']) – Loss types for detection, P picking, and S picking respectively.

	input_dimention (tuple, default=(6000, 3)) – Loss types for detection, P picking, and S picking respectively.

	normalization_mode (str, default='std') – Mode of normalization for data preprocessing, ‘max’, maximum amplitude among three components, ‘std’, standard deviation.

	mode (str, default='generator') – Mode of running. ‘pre_load_generator’ or ‘generator’.

	batch_size (int, default=500) – Batch size. This wont affect the speed much but can affect the performance. A value beteen 200 to 1000 is recommanded.

	gpuid (int, default=None) – Id of GPU used for the prediction. If using CPU set to None.

	gpu_limit (int, default=None) – Set the maximum percentage of memory usage for the GPU.

	Returns

	
	./output_name/X_test_results.csv (A table containing all the detection, and picking results. Duplicated events are already removed.)

	./output_name/X_report.txt (A summary of the parameters used for prediction and performance.)

	./output_name/figures (A folder containing plots detected events and picked arrival times.)

Notes

Estimating the uncertainties requires multiple predictions and will increase the computational time.

EQTransformer.core.trainer module

Created on Wed Apr 25 17:44:14 2018

@author: mostafamousavi
last update: 05/27/2021

	
EQTransformer.core.trainer.trainer(input_hdf5=None, input_csv=None, output_name=None, input_dimention=(6000, 3), cnn_blocks=5, lstm_blocks=2, padding='same', activation='relu', drop_rate=0.1, shuffle=True, label_type='gaussian', normalization_mode='std', augmentation=True, add_event_r=0.6, shift_event_r=0.99, add_noise_r=0.3, drop_channel_r=0.5, add_gap_r=0.2, coda_ratio=0.4, scale_amplitude_r=None, pre_emphasis=False, loss_weights=[0.05, 0.4, 0.55], loss_types=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'], train_valid_test_split=[0.85, 0.05, 0.1], mode='generator', batch_size=200, epochs=200, monitor='val_loss', patience=12, gpuid=None, gpu_limit=None, use_multiprocessing=True)

	Generate a model and train it.

	Parameters

	
	input_hdf5 (str, default=None) – Path to an hdf5 file containing only one class of data with NumPy arrays containing 3 component waveforms each 1 min long.

	input_csv (str, default=None) – Path to a CSV file with one column (trace_name) listing the name of all datasets in the hdf5 file.

	output_name (str, default=None) – Output directory.

	input_dimention (tuple, default=(6000, 3)) – OLoss types for detection, P picking, and S picking respectively.

	cnn_blocks (int, default=5) – The number of residual blocks of convolutional layers.

	lstm_blocks (int, default=2) – The number of residual blocks of BiLSTM layers.

	padding (str, default='same') – Padding type.

	activation (str, default='relu') – Activation function used in the hidden layers.

	drop_rate (float, default=0.1) – Dropout value.

	shuffle (bool, default=True) – To shuffle the list prior to the training.

	label_type (str, default='triangle') – Labeling type. ‘gaussian’, ‘triangle’, or ‘box’.

	normalization_mode (str, default='std') – Mode of normalization for data preprocessing, ‘max’: maximum amplitude among three components, ‘std’, standard deviation.

	augmentation (bool, default=True) – If True, data will be augmented simultaneously during the training.

	add_event_r (float, default=0.6) – Rate of augmentation for adding a secondary event randomly into the empty part of a trace.

	shift_event_r (float, default=0.99) – Rate of augmentation for randomly shifting the event within a trace.

	add_noise_r (float, defaults=0.3) – Rate of augmentation for adding Gaussian noise with different SNR into a trace.

	drop_channel_r (float, defaults=0.4) – Rate of augmentation for randomly dropping one of the channels.

	add_gap_r (float, defaults=0.2) – Add an interval with zeros into the waveform representing filled gaps.

	coda_ratio (float, defaults=0.4) – % of S-P time to extend event/coda envelope past S pick.

	scale_amplitude_r (float, defaults=None) – Rate of augmentation for randomly scaling the trace.

	pre_emphasis (bool, defaults=False) – If True, waveforms will be pre-emphasized. Defaults to False.

	loss_weights (list, defaults=[0.03, 0.40, 0.58]) – Loss weights for detection, P picking, and S picking respectively.

	loss_types (list, defaults=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy']) – Loss types for detection, P picking, and S picking respectively.

	train_valid_test_split (list, defaults=[0.85, 0.05, 0.10]) – Precentage of data split into the training, validation, and test sets respectively.

	mode (str, defaults='generator') – Mode of running. ‘generator’, or ‘preload’.

	batch_size (int, default=200) – Batch size.

	epochs (int, default=200) – The number of epochs.

	monitor (int, default='val_loss') – The measure used for monitoring.

	patience (int, default=12) – The number of epochs without any improvement in the monitoring measure to automatically stop the training.

	gpuid (int, default=None) – Id of GPU used for the prediction. If using CPU set to None.

	gpu_limit (float, default=None) – Set the maximum percentage of memory usage for the GPU.

	use_multiprocessing (bool, default=True) – If True, multiple CPUs will be used for the preprocessing of data even when GPU is used for the prediction.

	Returns

	
	output_name/models/output_name_.h5 (This is where all good models will be saved.)

	output_name/final_model.h5 (This is the full model for the last epoch.)

	output_name/model_weights.h5 (These are the weights for the last model.)

	output_name/history.npy (Training history.)

	output_name/X_report.txt (A summary of the parameters used for prediction and performance.)

	output_name/test.npy (A number list containing the trace names for the test set.)

	output_name/X_learning_curve_f1.png (The learning curve of Fi-scores.)

	output_name/X_learning_curve_loss.png (The learning curve of loss.)

Notes

‘generator’ mode is memory efficient and more suitable for machines with fast disks.
‘pre_load’ mode is faster but requires more memory and it comes with only box labeling.

EQTransformer.utils.associator module

Created on Fri Dec 27 18:52:42 2019

@author: mostafamousavi

last update: 01/29/2021

	
EQTransformer.utils.associator.run_associator(input_dir, start_time, end_time, moving_window=15, pair_n=3, output_dir='.', consider_combination=False)

	It performs a very simple association based on detection times on multiple stations. It works fine when you have a small and local network of seismic stations.

	Parameters

	
	input_dir (str, default=None) – Directory name containing hdf5 and csv files-preprocessed data.

	start_time (str, default=None) – Start of a time period of interest in ‘YYYY-MM-DD hh:mm:ss.f’ format.

	end_time (str, default=None) – End of a timeperiod of interest in ‘YYYY-MM-DD hh:mm:ss.f’ format.

	moving_window (int, default=15) – The length of time window used for association in second.

	pair_n (int, default=2) – The minimum number of stations used for the association.

	output_dir (str, default='.') – Path to the directory to write the output file.

	consider_combination (bool, default=False) – If True, it will write down all possible combinations of picked arrival times for each event. This will generate multiple events with the same ID, and you will need to remove those with poor solutions after location. This helps to remove the false positives from the associated event.

	Returns

	
	output_dir/Y2000.phs (Phase information for the associated events in hypoInverse format.)

	output_dir/associations.xml (quakeml output (containing origin and pick objects - using ObsPy functions). QuakeML is useful so that the user can then easily use ObsPy to generate input for other relocator methods (e.g. NonLinLoc). Contributed by Stephen Hicks)

	output_dir/traceNmae_dic.json (A dictionary where the trace name for all the detections associated to an event are listed. This can be used later to access the traces for calculating the cross-correlations during the relocation process.)

Warning

Unlike the other modules, this function does not create the ouput directory. So if the given path does not exist will give an error.

EQTransformer.utils.downloader module

Created on Sat Aug 31 21:21:31 2019

@author: mostafamousavi

last update: 01/29/2021

	
EQTransformer.utils.downloader.downloadMseeds(client_list, stations_json, output_dir, start_time, end_time, min_lat, max_lat, min_lon, max_lon, chunk_size, channel_list=[], n_processor=None)

	Uses obspy mass downloader to get continuous waveforms from a specific client in miniseed format in variable chunk sizes. The minimum chunk size is 1 day.

	Parameters

	
	client_list (list) – List of client names e.g. [“IRIS”, “SCEDC”, “USGGS”].

	stations_json (dic,) – Station informations.

	output_dir (str) – Output directory.

	min_lat (float) – Min latitude of the region.

	max_lat (float) – Max latitude of the region.

	min_lon (float) – Min longitude of the region.

	max_lon (float) – Max longitude of the region.

	start_time (str) – Start DateTime for the beginning of the period in “YYYY-MM-DDThh:mm:ss.f” format.

	end_time (str) – End DateTime for the beginning of the period in “YYYY-MM-DDThh:mm:ss.f” format.

	channel_list (str, default=[]) – A list containing the desired channel codes. Downloads will be limited to these channels based on priority. Defaults to [] –> all channels

	chunk_size (int) – Chunck size in day.

	n_processor (int, default=None) – Number of CPU processors for parallel downloading.

	Returns

	output_name/station_name/*.mseed

	Return type

	Miniseed fiels for each station.

Warning

usage of multiprocessing and parallel downloads heavily depends on the client. It might cause missing some data for some network. Please test first for some short period and if It did miss some chunks of data for some channels then set n_processor=None to avoid parallel downloading.

	
EQTransformer.utils.downloader.downloadSacs(client, stations_json, output_dir, start_time, end_time, patience, n_processor=None)

	Uses obspy to get continuous waveforms from IRIS in sac format after preprocessing and in daily chunks. The difference to the mseed downloader is that this function removes the instrument response as it gets the data.

	Parameters

	
	client_list (list) – List of client names e.g. [“IRIS”, “SCEDC”, “USGGS”].

	stations_json (dic,) – Station informations.

	output_dir (str) – Output directory.

	start_time (str) – Start DateTime for the beginning of the period in “YYYY-MM-DDThh:mm:ss.f” format.

	end_time (str) – End DateTime for the beginning of the period in “YYYY-MM-DDThh:mm:ss.f” format.

	patience (int) – The maximum number of days without data that the program allows continuing the downloading.

	chunk_size (int) – Chunck size in day.

	n_processor: int, default=None

	Number of CPU processors for parallel downloading.

	Returns

	output_name/station_name/*.SAC

	Return type

	SAC fiels for each station.

Warning

This function was not tested so you should be careful using it and make sure it gets the data.

	
EQTransformer.utils.downloader.makeStationList(json_path, client_list, min_lat, max_lat, min_lon, max_lon, start_time, end_time, channel_list=[], filter_network=[], filter_station=[], **kwargs)

	Uses fdsn to find available stations in a specific geographical location and time period.

	Parameters

	
	json_path (str) – Path of the json file that will be returned

	client_list (list) – List of client names e.g. [“IRIS”, “SCEDC”, “USGGS”].

	min_lat (float) – Min latitude of the region.

	max_lat (float) – Max latitude of the region.

	min_lon (float) – Min longitude of the region.

	max_lon (float) – Max longitude of the region.

	start_time (str) – Start DateTime for the beginning of the period in “YYYY-MM-DDThh:mm:ss.f” format.

	end_time (str) – End DateTime for the beginning of the period in “YYYY-MM-DDThh:mm:ss.f” format.

	channel_list (str, default=[]) – A list containing the desired channel codes. Downloads will be limited to these channels based on priority. Defaults to [] –> all channels

	filter_network (str, default=[]) – A list containing the network codes that need to be avoided.

	filter_station (str, default=[]) – A list containing the station names that need to be avoided.

	kwargs – special symbol for passing Client.get_stations arguments

	Returns

	stations_list.json

	Return type

	A dictionary containing information for the available stations.

EQTransformer.utils.hdf5_maker module

Created on Sat Aug 31 21:21:31 2019

@author: mostafamousavi

last update: 01/29/2021

	
	downsampling using the interpolation function can cause false segmentaiton error.

	This depend on your data and its sampling rate. If you kept getting this error when
using multiprocessors, try using only a single cpu.

	
EQTransformer.utils.hdf5_maker.preprocessor(preproc_dir, mseed_dir, stations_json, overlap=0.3, n_processor=None)

	Performs preprocessing and partitions the continuous waveforms into 1-minute slices.

	Parameters

	
	preproc_dir (str) – Path of the directory where will be located the summary files generated by preprocessor step.

	mseed_dir (str) – Path of the directory where the mseed files are located.

	stations_json (str) – Path to a JSON file containing station information.

	overlap (float, default=0.3) – If set, detection, and picking are performed in overlapping windows.

	n_processor (int, default=None) – The number of CPU processors for parallel preprocessing.

	Returns

	
	mseed_dir_processed_hdfs/station.csv (Phase information for the associated events in hypoInverse format.)

	mseed_dir_processed_hdfs/station.hdf5 (Containes all slices and preprocessed traces.)

	preproc_dir/X_preprocessor_report.txt (A summary of processing performance.)

	preproc_dir/time_tracks.pkl (Contain the time track of the continous data and its type.)

	
EQTransformer.utils.hdf5_maker.stationListFromMseed(mseed_directory, station_locations, dir_json='./')

	Contributed by: Tyler Newton

Reads all miniseed files contained within subdirectories in the specified directory and generates a station_list.json file that describes the miniseed files in the correct format for EQTransformer.

	Parameters

	
	mseed_directory (str) – String specifying the absolute path to the directory containing miniseed files. Directory must contain subdirectories of station names, which contain miniseed files in the EQTransformer format.
Each component must be a seperate miniseed file, and the naming
convention is GS.CA06.00.HH1__20190901T000000Z__20190902T000000Z
.mseed, or more generally
NETWORK.STATION.LOCATION.CHANNEL__STARTTIMESTAMP__ENDTIMESTAMP.mseed
where LOCATION is optional.

	station_locations (dict) – Dictonary with station names as keys and lists of latitude,
longitude, and elevation as items. For example: {“CA06”: [35.59962,
-117.49268, 796.4], “CA10”: [35.56736, -117.667427, 835.9]}

	dir_json (str) – String specifying the path to the output json file.

	Returns

	stations_list.json

	Return type

	A dictionary containing information for the available stations.

Example

directory = ‘/Users/human/Downloads/eqt/examples/downloads_mseeds’
locations = {“CA06”: [35.59962, -117.49268, 796.4], “CA10”: [35.56736, -117.667427, 835.9]}
stationListFromMseed(directoy, locations)

EQTransformer.utils.plot module

Created on Wed Jul 24 19:16:51 2019

@author: mostafamousavi
last update: 06/05/2020

	
EQTransformer.utils.plot.plot_data_chart(time_tracks, time_interval, dir_output=None)

	Uses fdsn to find availave stations in a specific geographical location and time period.

	Parameters

	
	time_tracks (pkl) – Pickel file outputed by preprocessor or mseed_predictor.

	time_interval (int) – Time interval in hours for tick spaces in xaxes.

	dir_output (str, default=None) – Directory for saving figure.

	Returns

	data_chart.png

	Return type

	fig

	
EQTransformer.utils.plot.plot_detections(input_dir, input_json, plot_type=None, time_window=60, marker_size=6)

	
Uses fdsn to find availave stations in a specific geographical location and time period.

	Parameters

	
	input_dir (str) – Path to the directory containing detection results.

	input_json (str) – Json file containing station information.

	plot_type (str, default=None) – Type of plot, ‘station_map’, ‘hist’.

	time_window (int, default=60) – Time window for histogram plot in minutes.

	Returns

	
	station_output.png (fig)

	station_map.png (fig)

	
EQTransformer.utils.plot.plot_helicorder(input_mseed, input_csv=None, save_plot=False)

	Plots an stream object overlied by detection times.

	Parameters

	
	input_mseed (str) – Path to the miniseed files for day long data.

	input_csv (str, default=None) – Path to the “X_prediction_results.csv” file associated with the miniseed file.

	save_plot (str, default=False) – If set to True the generated plot will be saved with the name of miniseed file.

	Returns

	miniseed_name.png

	Return type

	fig

API Documentation

This page provides the full API documentation for the Shadow package.

	EQTransformer.core.mseed_predictor module

	EQTransformer.core.predictor module

	EQTransformer.core.tester module

	EQTransformer.core.trainer module

	EQTransformer.utils.associator module

	EQTransformer.utils.downloader module

	EQTransformer.utils.hdf5_maker module

	EQTransformer.utils.plot module

 _static/up.png

_static/up-pressed.png

_images/10toto.jpg
8,521 Events Hand-Picked by JMA 21,092 Events Auto-Picked by EQTransformer

354'N

_images/11histtoto.png
S picks

5000

]
g g

Frequency
8
g

1000

MAE = 0.06's|
u=001s

0=008s

6000

5000

4000

3000

2000

1000

MAE = 0.05 5
H=L001s

0=007s

04

0.2

00
tma = tegr S

02

04

_images/1time.png
Trace Name: B921_PB_EH_2019-09-01T00:28:00.008300Z

g, 20 E
2€
25 o Picked P
58 200 —— Picked S
o 1000 2000 3000 4000 5000 6000
8 250 N
£5 —— Picked P
a3 o
£S — Picked
o 1000 2000 3000 4000 5000 6000
3y z
£5 0 o Picked P
H 8 200 — Picked S
~-- Earthquake ~-- P_arrival -~~~ s_arrival |
EQTransformer

4 1000 2000 3000 4000 5000 6000
sample

nav.xhtml

 Table of Contents

 		
 Welcome to EQTransformer’s documentation!

 		
 Overview

 		
 Dataset

 		
 Application to Japan

 		
 Application to Other Regions

 		
 Comparison with Other Methods

 		
 Installation

 		
 Installation via conda (recommended)

 		
 Installation via PyPI

 		
 Installation from Source

 		
 Tutorial

 		
 Downloading Continuous Data

 		
 Detection and Picking

 		
 Visualizing the Results

 		
 Phase Association

 		
 Building and Testing a New Model

 		
 Warnings and Recommendations

 		
 Copyright and License

 		
 Copyright

 		
 The MIT License

 		
 Contact

 		
 Contributing

 		
 Coding Standards

 		
 References

_images/4heli.png
UTC (local time = UTC - 07:00)

00:00:00

10:00:00

20:00:00

G5.CA06.00.HH2

time in minutes

4)
+
t +
I
1 P;
|
+ u
IlI + N
'
N '
]
1
- } + t
}
: " :
T T |
1
M N L 4
. i,
} .‘ ! +
=) = w

_images/5heli.png
G5.CA06.00.HH2

00:00:00
10:00:00
20:00:00

(00:£0 - DLN = W3 [e30]) DLA

time in minutes

_images/2time-frequency.png
B921:2019-09-01 00:28:00.008300

i
i
| 1
V i
|
204 H 4
3 HH i
£z o 3
[oX E— (NI L S
0 1000 2000 3000 4000 5000 6000

E
—— Picked P
—— Picked S

N
—— Picked P
—— Picked S

z
—— Picked P
—— Picked S

—— Earthquake
—— Partival
—— s_arrival

EQTransformer

_images/3Xdata_chart.png
== 3.component
= 1-component |

Stations

© © © © © © © © © © © ©

2V Y 07 Y Y 0> Y ¥ Y @¥ oY e
@ @ @ o o @ @7 o o e

EalE Gl Sl S S L L Ul CLalE Sl

Time

_images/8eqmap.png

_images/9arch.png
g >t
Detection Picking P-phase Picking S-phase

_images/6station_map.png
3 Stations

35.600{ CA06
35.595 -
35.590
B921
35.585 -
35.580
SMo8
35.575
e ® & @ SR
P Q P P P P P

—1.174e2

2800

2600

2400

2200

2000

1800

Number of Detections

_images/7SV08_outputs.png
puts

SV08 out

80 -

o o
(e] <

SI3UN0D) JUSA]

20 4

ZZ:61/20/60
0¢:61/20/60
8T:61/20/60
9T:61/20/60
¥1:61/20/60
Z¢1:61/20/60
0T:61/20/60
80:6T/20/60
90:61/20/60
¥0:61/20/60

Z0'61/20/60 -

00:6T/20/60
¢Z'61/10/60
0¢:6T/T0/60
8T:6T/T0/60
9T:6T/T0/60
Y1:61/10/60
Z¢1'6T/10/60
OT:6T/T0/60
80:6T/T0/60
90:6T/T0/60
¥70:6T1/T0/60
Z¢0'6T/10/60
00:6T/T0/60

event start time

_images/Picture1.png
TX.PB16.00.HHZ

00:00:00

* *

raa - —

= -
i~ -
[
£ [f T +—
z S -
+—~ " t

|

ST

20:00:00 }
} TX.PB16.00.HHZ

. == +

time in minutes

+

UTC - 07:00)

UTC (local time.

200000

_images/Picture11.png
TX.PB12.00.HHZ

—T

00:00:00

~mmepEnsYEsaEnanl

(00:£0 - 21N = 3w [e30]) 1N

10:00:00
20:00:00

time in minutes

_images/Picture12.png
UTC (local time = UTC - 07:00)

00:00:00

10:00:00

20:00:00

TX.PECS.00.HH1

“he—de—r - -
*
- S 3 gmammn n
W ——
*- S Johe—%
gk
ek A
- P19~
'L
i~ x
Ly =k
> ~he—ih-
At L)
L —— —H——d—k ~ =
-~ — —t e e—
He——h] > AR
~frmfsi= ey &
- he— —fife—
- -
e——% e -
PP Ade—A—
ok i
0

T
15

T T
30 45
time in minutes

60

_images/SF3.jpg
a) HMOB.NC_201607062318_NO b) HIZ.NZ_20091021125029_EV

25 5000 - - Manual_P_Arrival]
0 04 = Auto_S_Arrival
—-25 —5000 1 |
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
251 = Manual_P_Arrival |
- 0 = Auto_S_Arrival
251 T T T T T T —10000 1— T T T T T T |
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
254 2500 { — Predicted_P_Arrival |
0 == Predicted_S_Arrival
0 4
~2500 - |
_25 L T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
11 --- Detection | T e ~~- Detection
—~=- P_probability —=- P_probability
~=- S_probability ~=-- S_probability
0 L T T T T T T T I 0 L T T T T T T T I
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
C) d) KALE.HA 20140421052213 EV
KNK.AK_20120619132305_EV r = = 5
Manual_P_Arrival 1000 o anual P Amival
s - Auto_S Arrival
04 —— Manual_s_Arrival 04 VYN
Ll
~5000 -1000 1, : : ‘ : . .
(') 10'00 20'00 30'00 40'00 50'00 60b0 0 1000 2000 3000 4000 5000 6000
5000 — Manual P Arrival | 1000 1 — Manual_P_Arrival |
o4 ~— Manual_S_Arrival 0 RS0 rival
U -1000 4
-50001 . . e . ‘ ; T T . T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
2000 e P Arcival] oo — Predicted_P_Arrival |
o4 ~— 'Predicted_S_Arrival 0 = Predicted_S_Arrival
'v||l' RULLT AN B M ~500 4 LI
-2000 T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
S --- Detection I e — == --- Detection
—=- P_probability --- P_probability
-~~~ S_probability -=-- §_probability
01 : : : : : — 0 I
T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
e) KAN10.GS_20150406153029_EV HOM.AK_20121225104814_EV
= Manual_P_Arrival 5000 = Manual_P_Arrival
0 —— Manual_S_Arrival 0 == Manual_S_Arrival
-100000 T T T T T T . | =5000 +— T T T T T T |
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
—— Manual_P_Arrival | 5000 - — Manual_P_Arrival
0 —— Manual_S_Arrival oA —— Manual_S_Arrival
-100000 | =5000 1—, T T T T T y |
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
25000 - S— Predicted_P_ArrivaI' 2500 4 —_— Predicted_P_ArrivaI‘
04 = Predicted_S_Arrival ol —— Predicted_S_Arrival
-25000 4 | |
T T T T T T T —-2500 +— T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
I e N\ ~~- Detection] L P A -~~~ Detection
--- P_probability -==- P_probability
--- S_probability ~-- S_probability
o L T T T T T T T | 0 L T T T T T T T |
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
WAT7.AK_20180115165853_EV 002D.TA 20130324172604_EV
= Manual_P_Arrival] 2500 1 = Manual_P_Arrival
01 ——_Manual_S_Arrival 04 —— Manual_S_Arrival
vrwe o voww sy
| |
—2500 A
T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
01 —— Manual_P_Arrival] 2500 —— Manual_P_Arrival |
01 — Manual_S_Arrival 0o —— Manual_S_Arrival
-50 | RRLE T |
—2500 4
T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
254 —_— Predicted_P_ArrivaI- 2500 1 -_— Predi:ted_P_ArrivaI‘
0 - Predicted_S_Arrival 04 == Predicted_S_Arrival
LRV} v] - v
=25 v | —2500 4 |
T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
1 —_—_——,—m—_—_—_—— —-- Detection | L e e e e e e ~=—== --- Detection
~~- P_probability -=- P_probability
~== S_probability --- S_probability
0 L T T T T T T T | 0 L T T T T T T T l
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Sample Sample

_images/SF5.png
a) Trace Name: CA03_GS_HH_2019-07-08T22:37:39.964900Z b)
g’ 25000 E gy
S8 b S8
2t 0 }}, Picked P £5
8 —— Picked S 8
<E(—25000 E
o 1000 2000 3000 4000 5000 6000
g g
T @ 10000 N =)
8- — Picke 8
g 10000 g
o 1000 2000 3000 4000 5000 6000
€, 10000 z -
EX o Picked P EX
£ —10000 —— Picked S £S
~-- Earthquake ~-- P_arrival ~-- s_arrival
— —
. 1 {
5 06 { | { EqTransformer
S04 = |I
8 02 {] 0.1.0
< 00 L :
o 1000 2000 3000 4000 5000 6000
c) sample d)
Trace Name: CA05_GS_HH_2019-07-10721:04:40.605000Z
v 2000 E L)
EH Ta
£5 04 meem— —— Picked P £5
ES — Picked s g8
< <
o 1000 2000 3000 4000 5000 6000
1000
P N P
:aé o —— Picked P :aé
£9 —1000 — Ppicked s £8
o 1000 2000 3000 4000 5000 6000
$s z P
% S 0 Picked P :a E
8 —— Picked s 8
<E(—1000 <E(
~-- Earthquake ~-- P_arrival ~-- s_arrival
10 r
Zos {
306 EqTransformer
S o4
g
£ 0.2 0.1.0
0.0
o 1000 2000 3000 4000 5000 6000
sample f)
e) Trace Name: AKSH_NN_HH_2000-10-16T06:38:18.000000Z
g
Sy s00 E P
25 o —— Picked P 2%
;8 —500 —— Picked S g8
L3
o 1000 2000 3000 4000 5000 6000
L) 1000 [
EE N Sz
£ 5 0 Picked P £5
ES — Picked S H 8
<
o 1000 2000 3000 4000 5000 6000
g, 00 z gn
S8 52
£5 o —— Picked P £s
£Y —s00 —— Picked S £8
~-- Earthquake ~-- P_arrival ~-- s_arrival
10
Zos
3 06 EqTransformer
S o4
Lo2 L 0.1.0
0.0
o 1000 2000 3000 4000 5000 6000

sample

Trace Name: CAO5_GS_HH_2019-07-10T21:17:16.605000Z

10000 E
0 Picked P
~10000 —— Picked S
4 1000 2000 3000 4000 5000 6000
5000 N
0 —— Picked P
5000 — Picked S
o 1000 2000 3000 4000 5000 6000
5000 z
0 Picked P
-5000 —— Picked S
~-- Earthquake ~-- P_arrival ~-- s_arrival
y) M
5 o6 ‘ HH EqTransform
2 o4 t
202 \ t 0.1.0
< 00 .
o 1000 2000 3000 4000 5000 6000
sample
Trace Name: CAO5_GS_HH_2019-07-10721:22:52.605000Z
2500 E
0 »— +— Picked P
—2500 —— Picked S
0 1000 2000 3000 4000 5000 6000
2500 N
0 —— Picked P
~2500 —— Picked S
4 1000 2000 3000 4000 5000 6000
1000 z
') [——— sty - Picked P
~1000 —— Picked S
~-- Earthquake ~-- P_arrival ~-- s_arrival
A EqTransform
.
i 01.0
4 1000 2000 3000 4000 5000 6000
sample
Trace Name: AKSH_NN_HH_2000-10-16T02:. 0.000000Z
E
o —— Picked P
_1000 — Picked S
0 1000 2000 3000 4000 5000 6000
1000 N
0 v ~ picked P
~1000 —— Picked S
0 1000 2000 3000 4000 5000 6000
500 z
0 —— Picked P
-500 —— Picked S
~-- Earthquake P_arrival ~-- s_arrival
10
Zzos
306 EqTransform
g o
go2 0.1.0
% o0
0 1000 2000 3000 4000 5000 6000
sample

images/SF10.jpg
80000

60000

40000

Frequency

20000

30000

25000

20000

15000

Frequency

10000

5000

15000

12500

10000

7500

5000

Frequency

2500

30000

20000

Frequency

10000

EQTransformer

Pr=0.99
Re = 0.99
F1 =0.99
MAE = 0.01

MAPE = 0.00

Kurtosis

Pr=0.94

Re = 0.79
F1 = 0.86
MAE = 0.08
MAPE = 0.01

FilterPicker

Pr=0.73

Re = 0.70
F1 =0.71
MAE = 0.14
MAPE = 0.02

AIC

Pr=0.92
Re = 0.83
F1 = 0.87
MAE = 0.09

MAPE = 0.01

-0.4 -0.2 0.0 0.2 0.4
Ccataloge — Lpredicted S

EQTransformer

Pr=0.99
Re = 0.96
F1 = 0.98

MAE = 0.09
MAPE = 0.00

Pr=0.89
Re = 0.39
F1 = 0.55

Kurtosis

MAE = 0.11
MAPE = 0.01

Pr=0.61
Re = 0.41
F1 = 0.49

FilterPicker

MAE = 0.10
MAPE = 0.01

Pr=0.87
Re = 0.51
F1 =0.64

AIC

MAE = 0.12
MAPE = 0.02

-04 -0.2 0.0

Ccataloge — Lpredicted S

0.2

0.4

30000

25000

20000

15000

Frequency

10000

5000

8000

6000

4000

Frequency

2000

8000

6000

4000

Frequency

2000

8000

6000

4000

Frequency

2000

_images/SF13.png
Trace Name: JAL_SC_HH_2020-03-15T05:21:18.005000Z

= A

¥ A B D

L

fa b P By

L O

B e Ty T

- os =)

2 N\ A

5 067 \ A I

B0l | N A po8nl

o NN O\ N ‘\4'

& | f\",\/\A\"A‘/N/ Y, \w\\ —_—
0.2 1 W T N=Fo==32
0.0) | A A S —— ==

0 1()'00 ZOIOO 3()'00 4()'00 5()'00

Trace Name: JAL_SC_HH_2020-03-15T10:04:06.005000Z

iy
o o
!

y
o
©

Probabilit

o
N}
L

o o
> o
L

0.0 ==

E
= Picked P
Picked S

N
= Picked P
Picked S

z
= Picked P
Picked S

== Earthquake
== P_arrival
S_arrival

0.1.0

|

EqTransformer

_images/logo.png
EQTransformer

_static/ajax-loader.gif

_images/SF6.png
Trace Name: HKTH_NN_HH_2000-11-06T00:21:42.000000Z

e o

——+

y

o =
© o
-

Probabilit
o o
~ O

o
N
L

0.0 1

b \

v

o

1000

Trace Name: HKTH_NN_HH_2000-11-06T01:28:54.000000Z

6000

500

—250 1

Z 06
©

2 0.4
o

jut
a 0.21

[

0.0

o

3000 4000 5000

Sample

1000 2000

6000

Earthquake
P_arrival

== S arrival

EqTransformer

0.1.0

E
Picked P
Picked S

N
Picked P
Picked S

z
Picked P
Picked S

Earthquake
P_arrival
== S arrival

EqTransformer

0.1.0

Trace Name: HKTH_NN_HH_2000-11-06T00:36:24.000000Z

y

o~

® o o
A

Probabilit
o o
~ O

0.2 1

Trace Name: HKTH_NN_HH_2000-11-06T01:54:48.000000Z

1000

Earthquake
P_arrival
== S arrival

EqTransformer

0.1.0

Earthquake
P_arrival
== S arrival

EqTransformer

0.1.0

images/SF9.jpg
] Normalized]
Normalized Frequency Normalized

Normalized

Normalized

Normalized

Frequency

=
o

Frequency

IS

Frequency

Frequency

Frequency
D

N
o

=
(S}

12

10

[0}

(o)}

(o)}

w

w

N

=

o

10

[0}

EQTransformer

PhaseNet

GPD

Yews

PpkNet

pickNet

0.0

Pr=0.99
Re = 0.99
F1 =0.99
MAE = 0.01

MAPE = 0.00

Pr=0.96

Re = 0.96
F1 =0.96
MAE = 0.07
MAPE = 0.01

Pr=0.81
Re = 0.80
F1 =0.81
MAE = 0.08
MAPE = 0.01

Pr=0.54
Re = 0.72
F1=0.61
MAE = 0.09
MAPE = 0.02

Pr=0.90
Re = 0.90
F1 =0.90
MAE = 0.10
MAPE = 1.90

Pr=0.81
Re = 0.49
F1 =0.61

MAE = 0.07

MAPE = 0.02

0.2 0.4
tcataloge — tpredicted S

Pr=0.99

Re = 0.96
F1 =0.98
MAE = 0.09
MAPE = 0.00

Pr=0.96

Re = 0.93
F1 =0.94
MAE = 0.09
MAPE = 0.01

Pr=0.81
Re = 0.83
F1 =0.82
MAE = 0.10
MAPE = 0.01

Pr=0.75
Re = 0.75
F1=0.75
MAE = 0.11
MAPE = 0.01

Pr=1.00
Re = 0.91
F1 = 0.95
MAE = 0.10
MAPE = 1.85

Pr=0.83
Re = 0.55
F1 =0.66
MAE = 0.10
MAPE = 0.03

-0.4 -0.2

EQTransformer

Normalized
Frequency

PhaseNet

Normalized
Frequency

GPD

Normalized
Frequency

Yews

Normalized
Frequency

PpkNet

Normalized
Frequency

pickNet

N w S (0]
Normalized
Frequency

=

o

0.0 0.2 0.4

tcataloge — tpredicted S

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

